R. Scheuchl GmbH

Verfahrenstechnik Umweltschutz Anlagenbau Maschinenbau

Leipzig, 14. April 2021 Dr.-Ing. Andreas Weger (R. Scheuchl GmbH)

Separation of PCE-containing exhaust air by VOC concentrator and activated carbon

A practical example of large-scale industrialization

Separation of PCE-containing exhaust air by VOC concentrator and activated carbon

A practical example of large-scale industrialization

Outline

- Initial situation
- Characterization
- Process selection
- Plant concept
 - Experience
- Conclusion

Initial situation

Characterization Process selection Plant concept Experience Conclusion

Initial Situation

- Coating process using tetrachloroethene / perchloroethylene (PCE)
- Tightening of environmental regulations
- No substitution possible
- Design process data:
 - Raw gas volume flow: \geq
 - Raw gas temperature: \geq
 - Humidity: \geq
 - Ø Concentration: \geq
 - Concentration peaks: \geq
 - Operating time: \geq

- 8,000 Nm³/h 20 to 35 °C
- $5.8 10.6 \text{ g}_{H20}/\text{kg}_{air}$
 - ~ 4 ppm = 31 g $_{PEP}$ / Nm³
 - ~ 20 ppm = 148 g $_{PFR}/Nm^3$
- - 8,500 h/a
- Legal requirements for exhaust air purification:
 - Classification TA Luft: Organic substances, Class 1 (5.2.5)
 - Mass flow: \geq

 \geq

- 100 g PER/h
- Concentration: >
- 20 mg PER/Nm³

Characterization

- Properties / Substance characterization of PCE
 CAS No.: 127-18-4
 Molecular formula: C2Cl4
 - Substance group:
 - Characterization:
 - Solubility in water:
 - Molar mass:
 - Boiling point: 1
 - Ignition temperature:
 - ➢ Decomposition temperature: ≥ 140°C
 - Decomposition products:

C2Cl4 halogenated hydrocarbon, aliphatic, unsaturated non-flammable, photosensitive, highly volatile sparingly soluble 165 g/mol

- 121°C > 650°C / T1
 - Hydrogen chloride, chlorine, **phosgene**

Source: Gestis substance database, retrieved 8/4/21, https://gestis.dguv.de/data?name=013680

R. Scheuchl GmbH

Process selection

Process engineering preselection

Process	Suitability	Invest	Operating Costs	Space/Weight
Zeolite Concentrator	\Rightarrow	1	1	1
Low temperature condensation	↓			
Activated carbon (single stage)	1		Ļ	Ļ
Gas scubber (opted out by c.)	\Rightarrow	1	1	\Rightarrow
Thermal destruction	Ļ			

- Cleaning (adsorption) with activated carbon is state of the art, but causes high operating costs when implemented as single stage
- Preferred solution: Combination of Concentrator + Activated carbon
- Risk mitigation necessary with respect to **phosgene formation**

Process selection

- Literature search revealed no robust and even contradictory data
- Decision for experimental validation
- Objectives

 \geq

- Check of thermal stability of PCE
- Temperature-dependency of PCE decomposition
- Material compatibility of PCE with V4A (1.4571)
- Test setup and Equipment:
 - Samples: 4 g PCE/m³ + 18 g water /m³
 - Temperatures: 140 / 160 / 180 °C
 - Equipment: horizontal high-temperature furnace magnetic levitation scale thermogravimetric analysis (TGA)

Process selection

Results of laboratory tests on thermal stability /material compatibility

Chloride content [mg]	hypochloride content [mg]
0,05	n.n.
0,03	n.n.
0,03	n.n.
0,04	n.n.
	0,05 0,03 0,03

n.n. = not detectable (below detection limit)

- > Chloride contents in the same order of magnitude as 0.1 molar NaOH solution
- PCE does not age at contact times of approx. 30 sec!
- Corrosive hydrogen chloride (HCl), chlorine gas (Cl₂) or phosgene (COCl₂) not formed!
- > No optical changes to V4A material, no mass change detectable via TGA

Plant concept

- Two stage design: Zeolite concentrator followed by activated carbon plant
- 1st process stage: Concentrator
 - Raw gas containing PCE is purified by adsorption with zeolite rotor
 - Adsorber is regenerated with fresh air to produce the concentrate
 - Concentrate stream is fed to activated carbon plant
 - 2nd process stage: Activated carbon plant
 - > PCE-containing concentrate is purified by adsorption on activated carbon
 - Regeneration (desorption) of activated carbon with saturated steam
 - Separation of PCE/water mixture in two phase decanter
- Due to the concentrator, the concept leads to a compact plant design with reasonable operating costs at low risk!

Plant concept

Dimensioning of activated carbon plant / service life adsorbens

Parameter	Value	Unit
Activated carbon mass	460	kg
Loading capacity	30	%
PER adsorption mass	138	kg
PER mass flow	0,23	kg h⁻¹
Adsorption time	600	h

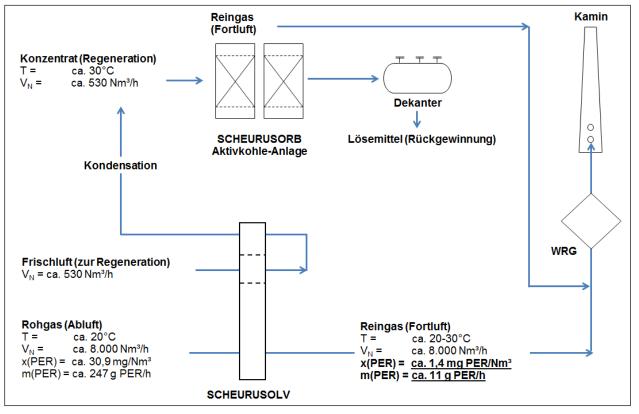
- Theoretical service life approx. 600 h per column
- Approx. 15 desorption cycles per year estimated

Initial situation

Characterization

Process selection

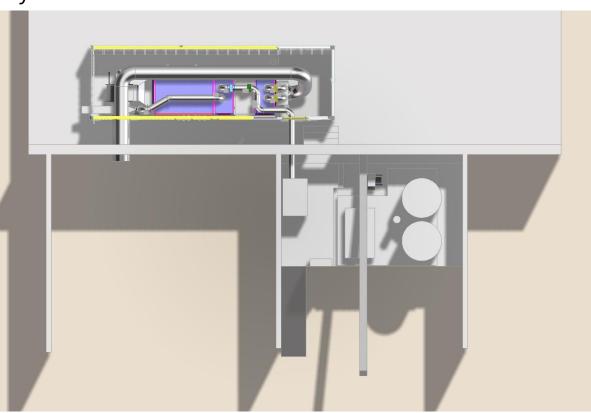
Plant concept


Experience Conclusion

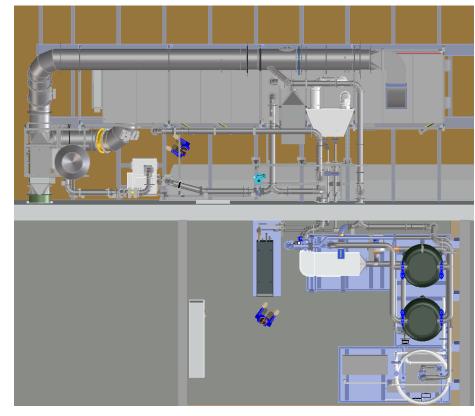
Plant concept

Mass balance

Initial situation Characterization Process selection **Plant concept** Experience Conclusion



R. Scheuchl GmbH


Layout

R. Scheuchl GmbH

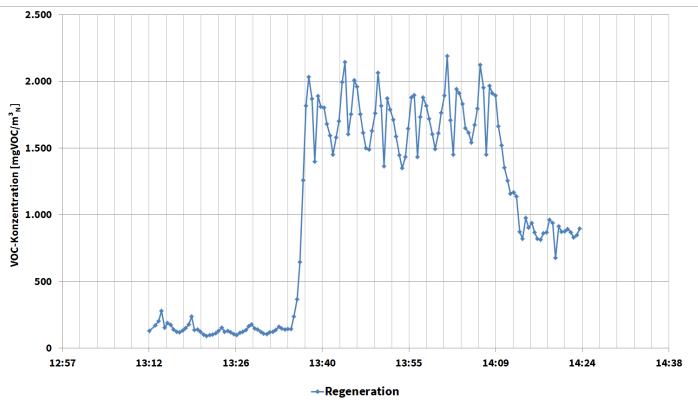
Plant concept

Layout

Experience

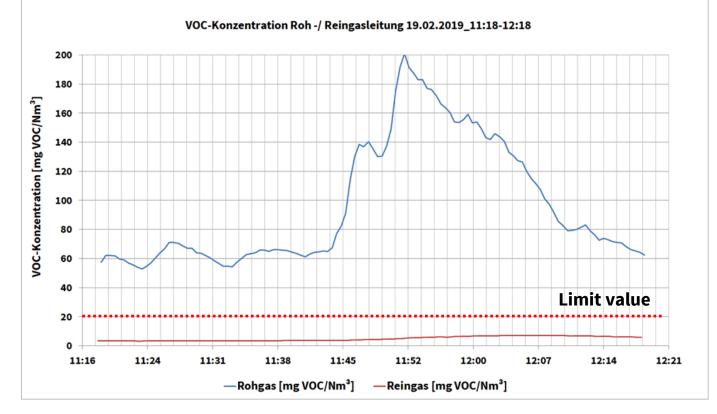
Plant settings - concentrator

0 Stripper K8.8 0 KV2.12 V2.13 - 25 °C 19,4 °C FSA9.2 PID KV9.15 PID 52 129,8 °C 46 °C Sollwert W2.7 D 36.8 °C 136 °C 12.17 Istwert W2.14 135,6 °C G4/F7 18 °C K 127 °C T3.1 83 °C 687 Bm3/h 528 Nm3/h Betrieb 28 Pa M1.8 M 90 91 KY1.12 KV1.3 0 PID 49 %rH Anforderung 78 79 7,5 g/kg G3 / M6 / I 7989 Nm3/h K¥1.1 34 °C 34,2 °C 33 °C 8962 Bm3/h A ¥1.9 V7.1 ¥10.1 97 Pa 101 Pa KY1.2 TISA10.2 29 °C Einhausung R1.8 Einstellungen Adsorption Konzentrator Parameter


Initial situation Characterization Process selection Plant concept **Experience** Conclusion

R. Scheuchl GmbH

Experience


Plant settings - concentrator

Cleaning performance - FID measurements

Experience

Experience

Desorption of activated carbon unit – two phases decanter

Initial situation Characterization Process selection Plant concept **Experience** Conclusion

Experience

Adsorption isotherme for PCE and achieved loading

Initial situation Characterization Process selection Plant concept **Experience** Conclusion

R. Scheuchl GmbH

Experience

- Adsorption/desorption behaviour of concentrator extremely dependent on process parameters
 - Rotation speed of zeolite rotor!
 - Concentrator desorption works with 140 °C
- Adsorption/desorption behaviour of activated carbon plant much slower than expected
 - Duration of desorption vs. loading capacity/cycle time per column (600 h)
- Practical adsorption capacity fits perfect with expectations

Conclusion

- Design approach
 - First time to use zeolite concentrator with PCE
 - > Total economic optimum achieved by innovative process combination
- Performance and stability
 - > Trouble-free plant operation since 2019 only PCE flow meter needed upgrade
 - No corrosion problems detected so far
 - > Perfect fit with all regulatory requirements

Many thanks for your attention

In case of further questions please don't hesitate to contact us

Dr. Andreas Weger Verfahrenstechnik / Process engineering Tel. +49 (8542) 165-739 weger@scheuchl.de

R. Scheuchl GmbH

Verfahrenstechnik | Umweltschutz | Anlagenbau | Maschinenbau

R. Scheuchl GmbH Königbacher Straße 17 94496 Ortenburg, GERMANY Tel. +49 (8542) 165-0 I Fax +49 (8542) 165-33 info@scheuchl.de I www.scheuchl.de

